lunes, 6 de mayo de 2013

Measuring transport through a single atom in a transistor.

Researchers from Delft University of Technology and the FOM Foundation(Fundamental Research on Matter) have successfully measured transport through a single atom in a transistor. This research offers new insights into the behaviour of so-called dopant atoms in silicon. The researchers are able to measure and manipulate a single dopant atom in a realistic semi-conducting environment. The individual behaviour of dopant atoms is a stumbling block to the further miniaturisation of electronics. The researchers have published their findings in the Physical Review Letters.

The electronic industry uses a semiconducting material, dominantly silicon, that contains dopant atoms. This 'contamination' is necessary for giving the silicon the desired electronic characteristics. Owing to the continuing process of miniaturisation, a situation has arisen in which the characteristics of two chips, despite both being manufactured in a totally identical way, still differ from each other. The number of dopant atoms per transistor has in fact become so small (only a few dozen) that they can no longer be regarded as a continuum. The position and effect of each individual atom influences how the entire transistor works. Effectively, this means that even perfectly manufactured transistors will not behave identically. This is an especially alarming situation for the electronics industry, which has already been feeling the pinch for a number of years.

Researchers Sellier, Lansbergen, Caro and Rogge of the Kavli Institute of Nanoscience Delft and the FOM Foundation have successfully managed to measure a single dopant atom in an actual semi-conducting environment. The researchers, who work in the Photronic Devices, transported a charge through one atom. Moreover, they successfully measured and manipulated the quantum mechanical behaviour of a single dopant atom. They were able for example to place one or two electrons in a particular shell of the atom.

Fuente: Nanowerk (2013). Measuring transport through a single atom in a transistor. Recuperado el 6 de mayo de 2013, de http://www.nanowerk.com/news/newsid=1055.php.

No hay comentarios:

Publicar un comentario